カテゴリ:科学系( 455 )

ピンポイント

神保町を歩いていて、山関係の古本を多く扱っている店の前を通ったので、久しぶりに覗いてみた。アルプ全冊が、数冊の欠があるものの3万しないのを見て、随分と安いなぁなどとしみじみし、今井雄二さんの本も、周はじめさんの本も見当らずに帰ろうかとおもったら、あまりにもピンポイントのタイトルに惹かれて、思わず買込んでしまった。
c0164709_07571816.jpg


著者は、このキノコのファン。なにしろ、試食するぐらいだから、病膏肓に入るという状況ではあるけれども、どちらかというと、絵画や文学などで出てくる話を拾っていて、このキノコを通して菌類に詳しくなれるかとも思って買込んだ身の上としては少しばかり予想外の買物となってしまった。

諏訪のあたりに住んでいた人から、このキノコをゆでこぼして干した後に、味噌汁のだしにすると旨いけど、入れすぎると舌がしびれるという話を聞いたことがあるのだけれども、ざっくり読んだ限りでは、舌のしびれをもたらすような毒性分ではない気もするけれども、どうなんだろう。さすがに、自分で試す気はない。

[PR]
by ZAM20F2 | 2018-05-22 07:57 | 科学系 | Comments(0)

ミジンコ撮影の困難さに佐々木昆さんを思う

c0164709_16385704.jpg

ここのところ、ミジンコ写真を撮っている。といっても、いつ終わるとも分からない練習中というのが現状だ。
c0164709_16392809.jpg

c0164709_16390788.jpg

c0164709_16401388.jpg

c0164709_16391587.jpg

c0164709_16392249.jpg



昨シーズンは、ミジンコは入手したんだけれど、水槽を作って撮影をしようという矢先に、飛び込んで来た蚊に向けて吹きかけた殺虫剤の影響か、一夜にして全滅してしまい、そのまま、新たなミジンコを入手せぬままに終わってしまった。

ミジンコ屋さん(本当は魚屋さんらしいのだけれど、私の中ではミジンコ屋かつゾウリムシ屋さんだ)は、昨年は袋詰めの品を売っていたのだけれど、今シーズンは店で飼っているタマミジンコをその場で袋詰めして暮れる。袋の中で弱ってしまう恐れがなくあんり、また、品切れもなくめでたいところだ。

ミジンコは、その辺の緑がかった水に入れておくと増える。ゾウリムシ用に買い込んだワカマツを入れておくと、さらに増える気がする。

動きは速く、定常光のシャッター速度では止められないので、ストロボを炊いている。使っているのはフィルム時代のOMシステムのマクロフラッシュだ。OMシステムではストロボのTTL調光が可能なのだけれど、カメラのX接点でつないでいるので調光は出来ずにマニュアルで使っている。撮影したその場で露出確認が出来るし、ISO感度もある範囲で変えられるので、露光調整はそれほど困難ではない。デジタルカメラになって、この手の撮影は素人が手を出せるものになった。

フィルム時代には、ポラロイドを使う以外は、その場での露出確認は不可能だった。適正露出条件を出すのには、時間と金のかかる試行錯誤が必要だったはずで、とても気軽に出来るものではなかったはずだ。その時代に生き物のマクロ撮影を行っていたのは佐々木昆さん。佐々木さんは、膨大な試行をもとに、様々撮影条件での露光に対するデータをまとめていて、それを使っての撮影は佐々木さんの独擅場だった。オリンパスがストロボのTTL調光システムを開発したときに、佐々木さんは、開発者の米谷さんに、これで、誰でもマクロのストロボ撮影が出来るようになってしまったと言ったという話をどこかで読んだ記憶があるのだけれど、それでもTTL調光は平均測光でしかないので、暗視野画像なんかには使えないと思う。それが、デジタルの時代になって、どんな条件下でも、素人さんでも露出が取れるようになった。そしてまた、フィルム代金を気にすることなく何枚でも撮影出来る。TTL調光とは比べものにならないほどの影響がある。

とはいえ、ミジンコの撮影、いまだに練習中のわけで、フィルムだけの時代であのような写真を撮影されていた技術力とそれを支える努力のすごさを改めて感じている。

[PR]
by ZAM20F2 | 2018-04-22 16:42 | 科学系 | Comments(0)

演色性評価指数についてのメモ

しばらく前に、何人かでezSpectra 815Vを使ってLEDの演色性評価指数を計りながら頭を悩ませていた。多くのLEDは色温度が高すぎるので、適当なフィルターで色温度を下げて色味をよくしようという話で、実際、フィルターによって、LEDの青すぎる色味が落着いて、見た目には自然な光に近づくのだけれども、演色性評価指数は低下してしまうのだ。
何でかなぁと思って、演色性評価指数の計算方法を調べて分ったことは、あの値は、計測光源の色温度と同じ色温度の参照光源(黒体放射か色温度の関数として指定されるスペクトル)からのズレを特定の8色について評価した平均値であるということ。このため、青色光が強くて、色温度が1万Kを超えちゃうようなLEDでは、赤色側の光が欠如していても、その色温度の光としては赤色が弱いのは当然なので、それなりの値の指数が出てしまう。そして、フィルターを使って青色光を遮ると、色温度が低下する結果として、あるべきはずの赤色光の欠如により指数が低い値となってしまう。
でも、フィルターを入れた方が、光源の色温度が下がって、回りの光との色温度の差が小さくなるために、青みが取れた、より自然な光に見える。

その時のLEDは手元にないのだけれども、フィルターにより演色指数が低下するのは、豆電球を使っても再現できる。
c0164709_20444741.gif

まず、豆電球のみの測定ではRa98が出てくる。この時の色温度は2600Kだ。
c0164709_20445963.gif

これに写真用のMC-80Aをかぶせてみると、色温度は4100Kまで上昇する一方で、Raは88に低下する。
c0164709_20450331.gif

80BだとRaの低下は少なく、91だけれど、色温度は3500Kまでしか上昇しない。
c0164709_20450756.gif

ついでに、ニコンの顕微鏡についている色温度変換フィルターを試してみると、80Bより効果は少なく色温度は3000K程度で、Raは94という高い値を保っていた。
フィルターにより色温度を変えることにより、どうしても黒体放射からは外れてしまうために、Ra値が低下するという印象だけれども、現実問題として、それにより色再現に問題が生じることはないような印象がある。
[PR]
by ZAM20F2 | 2018-04-11 20:50 | 科学系 | Comments(0)

附 その設計法

山北藤一郎さんの「モーターと変圧器の作り方」タイトルに「附 その設計法」なんて文言が入っているのがすてきなところ。
c0164709_06542984.jpg

それにしても、この本、決して戦争末期に出たものでないのだけれど、紙質が悪く、今にも崩壊しそうな感じだ。

[PR]
by ZAM20F2 | 2018-04-09 06:57 | 科学系 | Comments(0)

C12666MAとC12800MAの感度を考える

ezSpectraはC12666MAをカラーコンパスPCFはC12880MAを使っている。両者で何が違うのかと言えば、浜松ホトニクスのカタログでは、C12666MAが高ダイナミックレンジ、C12880MAが高感度とされている(それ以外にC12880MAの方が長波長まで測定できるといった違いもある)。C12800MAは内部に増幅器を持っていて信号を増幅しているらしい。ただし、両方の感度に関する情報はなく、どの程度高感度で、どの程度ダイナミックレンジが広いのかはカタログを眺めてもよくわからない。

ところで、そのカタログにある測定出来る入射光量範囲を見てみると、C12880MAが3E×10-14~1×10-6であるのに対して、C12666MAは3.5×10-13~3×10-7となっている。C12880MAの方が測定可能範囲が広いわけで、単純に考えると、C12880MAの方がダイナミックレンジも広いのではないかと思われる状況になっている。
c0164709_07031915.gif


ただ、カタログを見ると、測定出来る入射光量範囲は、それぞれのデバイスの設定可能な蓄積時間から算出していると記してある。設定可能な蓄積時間は両者で異なるとされているのだけれども、その範囲については明示的には示されていない。

ただ、浜松ホトニクス製の評価ボードのスペックとして、C12666MAに対応するものは5ミリ秒から10秒となっており、C12800MAの方は、0.011ミリ秒から100もしくは1000ミリ秒となっている(カタログにより異なる。単体のカタログは1000ミリ秒になっている。)。他にデータがないので、これを設定可能な蓄積時間として考えることにする。

すると、光量範囲の最大値は、最小蓄積時間、最小値は最大蓄積時間に対応するはずである。そこで、最小と最大を蓄積時間10ミリ秒にした場合にどのような値になるかを計算することにする。このときの最小値は、測定可能な最小電荷で、最大値が飽和電荷になると考えられる。両者の比がダイナミックレンジになるはずだ。

C12666MAの方は、10秒で3.5×10-13なので、10m秒だと3.5×10-10が最小値となる。最大値は5ミリ秒で3×10-7なので、10ミリ秒だと、1.5E×10-7となる。一方のC12800MAは、最大蓄積時間を100ミリ秒とすると、最小値は3×10-13、1000ミリ秒なら3×10-12となる。最大値は、0.011ミリ秒で1×10-6なので、1.1×10-9となる。まとめると、
C12666MA 3.5×10-10~1.5×10-7
C12800MA 3×10-12(3×10-13)~1.1×10-9
となる。最大値と最小値の比をとると、C12666MAは430、C12800MAは370程度となる。なお、C128000MAについては、最大蓄積時間を100ミリ秒とすると、比率は3700になってしまうのだけれど、これは、さすがに値が大きすぎるので、1000ミリ秒を用いた値としている。

この計算にどの程度の正当性があるのか分からないけれども、一応、C12666MAの方が15%程度ダイナミックレンジが広いことになる。高ダイナミックレンジというには、差が少ない気もする。
ただ、前にも記したけれど、C12800MAを使ったカラーコンパスPCFは測定データが揺らぐのだけれども、これはC12800MA本体の特性が絡んでいるようだ。

[PR]
by ZAM20F2 | 2018-04-03 07:25 | 科学系 | Comments(0)

カラーコンパスPCFの飽和値について

カラーコンパスPCFは12ビットのA/Dを使っている事になっているが、表示されるグラフの最大値は4100程度であるにも関わらず、各波長の強度データは小数点以下の数値がある。この点は、前に記したように、本来は、整数波長ではない横軸を整数波長毎の値にするときの補間計算により生じた物なのだろうと思える。

ただ、ダークが800程度あるにも関わらず、ダークを引いた値の強度データが3300を平然と超えるのは腑に落ちない点であった。差引き後の値が3300より大きくてもスペクトルが歪まないのなら、信号強度の最大値は4095ではなく、より大きな値でなくてはならないからだ。

そこで、わざと露光時間を長くして、スペクトルの所々が画面を超えるような状況の測定を行った。ダークを引いていないものでは、飽和値は8000程度となっている。一方、ダークを引いたものは、最大値が7200程度で、8000からダークの800程度の値を引いたところで飽和している。
c0164709_14580042.gif


この結果を見ると、カラーコンパスPCFの飽和レベルは、8000程度であることになるのだけれど、そうなるとA/Dが12ビットであることや、ホワイトの初期値を4095としていることなどとの間に齟齬が生じてしまう。8000までの値を扱うなら13ビット欲しいはずで、それを12ビットで処理していたら、強度は2単位での変化となってしまう。

まあ、分光器の使い勝手としては、フルスケールを超えたとたんに信号が飽和するよりも、ある程度の余裕があった方が有難いのはたしかではある。でも、フルスケールの倍まで余裕があるとなると、少しばかりだまされた気分となる。何しろ、現状では4000を11ビットで扱っていることになるので、最小分解能は1/4000ではなく1/2000とA/Dからの思い込みの半分になってしまっているのだから。




[PR]
by ZAM20F2 | 2018-04-01 14:58 | 科学系 | Comments(0)

カラーコンパスPCFの保存ファイルの内容

カラーコンパスの入射光部分には厚さ3mmのプラスチック板が取り付けてある。
c0164709_06510715.jpg

c0164709_06502326.jpg


これを外すと分光ユニットが顔を出す。
c0164709_06510641.jpg

周囲の板より0.5mmほど奥まった位置に分光ユニットの前面がある。スリットの位置は分光ユニット前面から2.5mmほど内側らしいので、3mmのプラスチック板と合わせると、6mmほど内側にスリットがあることになる。
厚さ3mmのプラスチック板には半径1.5mmmの穴が開いている。入射スリットは幅があるけれども、とりあえず、穴の中心の一点からで考えると、入射角度は14度ほど、NAは0.24程度となる。ということは、プラスチック板の穴に適当な拡散板を取り付ければ、入射NAは大体確保出来る事になる。

測定データをCSV形式で保存した物の一部を示す。これは、「縦波長」にチェックをいれたもの。チェックを忘れると、横方向に波長が連なったデータファイルとなる。
c0164709_06525977.gif



不思議なのは、波長が整数単位で1nm刻みになっていること。使っている分光ユニットは340~850nmで288ピクセルなので、おおよそ1.8nm刻み。整数になるわけもないし、整数値の間に測定データがない状況も出現するはず。カラーコンパスが出している測定値は、何らかの補間操作を行ったもので、本当の生データではない。

このデータは、ダークを測定していない状態で書き出したもの。この出力からすると、ダークの初期値は0、ホワイトの初期値は4095となっている。ホワイトの初期値はA/Dが12ビットだからだろうという印象だ。

ダークの測定を行った状態では、ダークに測定値が入る。生データはダークがのった測定値となっている。正規化の値は生データをホワイトで割ったものを2000倍したものだけれども、すごく小さな値となっている。ということは、生データ(とホワイトから)ダークを引いた状態のもので演算をしているようだ。
c0164709_06534900.gif


ダークを引くにチェックを入れると、保存されるデータはダークを引いた物となる。
c0164709_06541808.gif


少しばかり不思議なのは、どの段階で差をとっているか。A/Dは12ビットのはずなので、単純には0~4095の値になる。その値で生データやダークを拾ってきて差をとると、ダークが800程度はあるので、最大値でも3200程度にしかならない気がする。でも、差をとる画面では4095までの表示が行われる。ということは、A/Dの前のアナログ状態でオフセットを引いているのかしらとも思うけれども、そうなると、本体のA/Dの前に差分演算があることになるけれども、それは少しばかり考えにくい気がする。何をやっているのだろうか。

なお、ダークの原因としては、読み込み時のオフセットやノイズと、測定時間に比例する成分があるはずかえれども、比例成分は他に比べると影響は小さいようで、測定時間を大幅に変えてもダークレベルは実質的に変わらないようだ。


ダークの測定を行わずにホワイト登録をすると、ダークの値は0のままホワイトに値が入る。この場合、正規化は下駄を履いたデータ同士で行われることになるため、まっとうな比率にはならない。

c0164709_06555817.gif

ダークとホワイトの両方を測定して、ダークを引く設定をすると、生データとホワイトともダークを引いた値となり、この状態での正規化は正しい透過率となる。
c0164709_06562813.gif



ダークとホワイトが測定してあっても、ダークを引く設定になっていないと生データもホワイトもダークがのった状況となる。しかし正規化はダークを引いた後に計算しているようで、値としてh正しい物になるようだ。

c0164709_06564236.gif

このあたり、きちんとした取説が欲しいところだ。

[PR]
by ZAM20F2 | 2018-03-28 07:02 | 科学系 | Comments(0)

ezSpectra 815Vのフィルター補整効果

ezSpectraのソフトバージョンが1.8台から1.9台になって、フィルター補整が付け加えられた。マニュアルもそれにあわせて改訂されているので使い方はマニュアルを見て頂くとして、ここでは、それ以外の使った印象を紹介する。
フィルターは初期設定で、幾つかのNDフィルターが用意されている。ezSpectraを使って透過測定した結果をフィルターとして保存もできる。保存したテキストファイルをマイドキュメントの下に作られたezSpectraフォルダーの下のFiltersの中に入れると次回以降は選択できるようになる。
マニュアルによると、ユーザー設定のフィルターファイルは、その個体のみで有効とのことだけれど、これは、ezSpectraで使っている分光ユニットは個体毎に波長が微妙に違うためだと思う。実際、テキストファイルを見ると、分光ユニットのシリアル番号らしいものがあり、そして、波長も半端な数値ですべて書き込まれている。
楢ノ木技研さんの用意したフィルターファイルは、ユーザー設定のフォルダーには見当たらない。どこにあるかというとezSpectraのプログラムがあるフォルダーの下に作られたFiltersフォルダーに入っている。こちらは、200nmか300nmから1nm毎のデータファイルになっている。これらを別のフォルダーに移すと、フィルターの選択肢には入らないようになる。選択肢が多くて面倒と感じる場合にはファイルを移動すると良いだろう。
これらのファイルはテキストファイルなので、その気になれば、他の分光器で測定したデータを使って、独自にフィルターファイルを作れると思う。ただ、やってみた限りで、何かが悪いとまともに動作しない。ユーザー設定の方は、一応は使える物が出来たけれど、共通の方はうまく作れていない。

さて、フィルターを使うと何が良いのかを眺めてみよう。
c0164709_18334589.jpg

これは、フィルターなしで豆電球を測定したもの。400nmより短波長の迷光の浮き上がりがある。これに、近赤外を低下させる熱線フィルターを組み合わせてみる。
c0164709_18350911.jpg

これは、フィルター設定をいれたけれども、実際にはフィルターを入れていない状態。スペクトルが大きく歪んでいる。これに、実際にフィルターを入れて測定するとまっとうなスペクトルとなる。
c0164709_18360377.jpg

スペクトルの形状は問題なく、そして、400nmより短波長の浮き上がりが大きく抑制されている。浜松ホトニクスのマイクロ分光ユニットは近赤外光に弱いようなので、より正確なスペクトルが欲しかったら、熱線吸収フィルターとの組み合わせがお勧めで、フィルター補整を使えば、それでスペクトルが見えるので悪くないと思う。
ただ、フィルターを欠けた状態だと、測定時は、見た目の信号強度が小さくなる
c0164709_18375535.jpg

信号強度を上げようと、露光時間を長くするとスペクトルが歪む。
c0164709_18384263.jpg

最初に見た時は何が起こったのか分からなかったけれど、冷静に考えると、補整前の生データがオーバーフローを起こしているという話だ。
自動露光調整にしておくとオーバーフローすることなく、生データのマックスをあわせる形になるので、フィルター補整を使う時は、露光調整は自動にするのがお勧めのようだ。



[PR]
by ZAM20F2 | 2018-03-24 18:40 | 科学系 | Comments(0)

カラーコンパスPCF

楢ノ木技研さんのezSpectra 815Vを見せびらかして遊んでいたら、秋月で浜松ホトニクスのマイクロ分光器を使った分光ユニットを3万円台で売っていると教えてくれた人がいた。
驚いてWebを見ると、確かに浜松ホトニクスのC12880MAを使ったUSB分光器を32200円で売っている。ATシステムという会社のカラーコンパスPCFという商品だ。

ATシステムのWebを見ると分光ユニットのお膝元にある会社でC12880MAを使ったカラーコンパスPCFとC12666MAを使ったカラーコンパスPCNを作っている。両方とも、定価は43200円なのだけれど、秋月の価格はそれより1万も安く、大丈夫だろうかと心配になってしまう。


ソフトはWindows用と、アンドロイド用(試作中)が提供されている。

c0164709_13263570.jpg

本体は非常にコンパクト。ラベルが貼ってあるのが見えるが、これは、使っているユニットのシリアル番号のようだ。本体とともに、波長校正データの係数を記載したシートが添付されていた。

初期の製品ではケースには受光部の穴が開いているだけだったようだが、現在の製品では、四角のプラスチック板がつけられている。きちんと計測していないが、ファイバーコネクタを取り付けられるようになっている気がする。ただし、本体側に集光光学系などはないので、素通しのコネクタを使ってファイバーを取り付けると、かなり効率が悪くなるだろうと思う。

c0164709_13273299.gif


ソフトは非常に単純な作り。起動後にまず左上の検出をクリックして本体を呼び出す(自動認識ではない)。続いて右上の開始をクリックすると、測定が始まる。得られたデータを見て露光時間を手動で調整する。ただし、露光時間の値を変えても、一旦測定を停止してから再開しないと反映しないので、数値を入れて様子を見ながら最適の時間にすることは出来ない。

生データはものすごく下駄を履いている。光を入れない状態でダーク登録をして、ダークを引くをチェックすると、下駄は大体落とせる。

ホワイト登録は、透過測定などのリファレンス光の登録になる。表示モードに正規化があり、このモードでは、測定データをホワイト登録で除算した値が0~2の範囲で表示される気がする。

c0164709_13281376.gif

この分光器で豆電球のスペクトル計測を行った。生データ1から3は配置を換えずに行った測定で測定結果に揺らぎがあることが分かる。拡散板は本体の前に拡散板を貼り付けて測定したもので、600nm付近のピークや700nmを中心に見られる構造が消失している。ezSpectraと同様に、きちんとNA0.2程度の光束を入れないと、分光器由来の構造が出現することが確認される。
測定の光源は豆電球を使っており、強度のピークは近赤外にある。測定データが600nm台で最大になっていると言うことは、この製品は波長毎の強度に関しては校正が行われていないことを示している。一応、浜松ホトニクスのWebに掲載されている典型的な強度分布を表示する機能はあるのだけれども、強度分布は個体差があるので、それを使って補整しても、スペクトル強度分布の正しさは保証されないだろうと思う。

c0164709_13292102.gif

黄色いプラスチック板の透過測定を行ってみた。ホワイトがフィルターを入れない状態で、フィルターを入れた物が生データ。正規化が割り算の結果。測定の短波長側は、黄色フィルターで光が遮断されているはずだが、透過率が増えている。これは、分光ユニットの迷光の為で、どうやら、浜松ホトニクスのマイクロ分光ユニットに共通の事のようだ。


カラーコンパスPCFとezSpectra 815Vとでは、現時点で対象とする用途が異なっている印象が強い。ezSpectraの方は、単体としての測定器であるのに対して、カラーコンパスの方は、組み込みパーツ色が強い。

この点は両者の取り扱い説明書に如実に表れていて、ezSpectraの方は、かなりきちんとした説明書があるのに対して、カラーコンパスはマニュアルがないに等しい。ソフトのヘルプをクリックしても、バージョン情報が出てくるだけだ。

また、ソフトにしてもezSpectraの方は、起動するだけでスペクトル表示が行え、露光時間の自動調整機能もある。手動で露光時間を変えても、リアルタイムで結果に反映する。さらに、色温度や演色性評価指数もリアルタイム表示が可能だ。

ezSpectraは楢ノ木技研が波長/強度の校正作業を一台ずつ行っているので、可視波長域の光強度の測定が可能であるのに対して、カラーコンパスの方は、校正データを自分で用意しない限りは光強度の波長分布は正しくは得られない。LEDの発光波長を求める用途や、発光波長分布の狭い光源のスペクトル形状を求めるのには十分な能力を持っているけれども、可視域全域にわたるスペクトル強度評価は避けた方がよい。

透過や反射測定に関しては参照光源を用いた相対測定となるため、カラーコンパスでも問題なく行える。ただし、積算しないと、それなりの揺らぎが生じてしまう印象を持っている。一方のezSpectraは参照光が弱い領域では透過スペクトル測定をしない設定になっており、妙な結果がでないような配慮がなされている。もっとも、この親切さは、分かって使っている人にとっては、余計なお世話という面もある。

感度はカラーコンパスの方がezSpectaraに比べてかなり高い(露光時間の値が正しいなら、3桁ぐらい高い気がする)。本体のコンパクトさやケースにねじ穴があることなどから、たとえば顕微鏡に取り付けて顕微分光をするといった用途には、カラーコンパスの方が使いやすい気はする。

というわけで、現時点での使い分けとして、可視領域の光の強度分布も含めた測定がしたい場合には、標準電球が手元にあって、校正作業等も出来る人を除いてはezSpectraをお勧めする。一方、やりたいことが、LEDの点灯波長を測定するとか、透過測定を行うだけならカラーコンパスPCFでも問題ない。そして、とにかく感度が高い方がよいというならカラーコンパスPCFが選択肢となるだろう。


[PR]
by ZAM20F2 | 2018-03-21 13:34 | 科学系 | Comments(0)

ブルーレイカット

老眼が進んで、眼鏡を作って、今のを予備に回すことにした。で、店員さんが無料でブルーレイカットコーティング出来ますけどというので、思わずつけてもらうことにした。
できあがった眼鏡、反射がブルーっぽい。
c0164709_07094600.jpg

先代の反射はグリーンがかった色。
c0164709_07094639.jpg

比べると、確かにブルーをカットしてそうなのだけれど、定量評価すべく、ezSpectraで測ってみた。
両方とも凸レンズなので、測定に難しいところはあるのだけれど、とりあえず、受光窓の直前に眼鏡を置いて測定している。
c0164709_07094602.jpg

比べてみると、確かに青色領域の透過は減っている……のだけれど……
いわゆる、青発光-黄色蛍光タイプのLEDの青色発光領域の光は、あんまり反射している気がしない。
どのくらい効果があるのだろうか?

[PR]
by ZAM20F2 | 2018-01-30 07:16 | 科学系 | Comments(0)